Selecting Base Points for the Schreier-Sims Algorithm for Matrix Groups

نویسندگان

  • Scott H. Murray
  • E. A. O'Brien
چکیده

We consider the application of the Schreier-Sims algorithm and its variations to matrix groups defined over finite fields. We propose a new algorithm for the selection of the base points and demonstrate that it both improves the performance of the algorithm for a large range of examples and significantly extends the range of application. In particular, the random Schreier-Sims algorithm, with this enhancement, performs extremely well for almost simple groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Schreier-Sims algorithm

A base and strong generating set provides an effective computer representation for a permutation group. This representation helps us to calculate the group order, list the group elements, generate random elements, test for group membership and store group elements efficiently. Knowledge of a base and strong generating set essentially reduces these tasks to the calculation of certain orbits. Giv...

متن کامل

The Schreier-Sims algorithm for matrix groups

This is the report of a project with the aim to make a new implementation of the Schreier-Sims algorithm in GAP, specialized for matrix groups. The standard Schreier-Sims algorithm is described in some detail, followed by descriptions of the probabilistic Schreier-Sims algorithm and the Schreier-Todd-Coxeter-Sims algorithm. Then we discuss our implementation and some optimisations, and finally ...

متن کامل

Computable Subgroup Chains and Shadowing

We present a new structural framework for computational group theory, based on chains of subgroups. This extends existing methods, such as Schreier-Sims techniques for permutation groups. This framework is now a part of the GAP 4 computational algebra system. It will be useful for implementing the matrix group recognition project.

متن کامل

Gröbner-Shirshov bases for Schreier extensions of groups

In this paper, by using the Gröbner-Shirshov bases, we give characterizations of the Schreier extensions of groups when the group is presented by generators and relations. An algorithm to find the conditions of a group to be a Schreier extension is obtained. By introducing a special total order, we obtain the structure of the Schreier extension by an HNN group.

متن کامل

A Novel Methodology for Structural Matrix Identification using Wavelet Transform Optimized by Genetic Algorithm

With the development of the technology and increase of human dependency on structures, healthy structures play an important role in people lives and communications. Hence, structural health monitoring has been attracted strongly in recent decades. Improvement of measuring instruments made signal processing as a powerful tool in structural heath monitoring. Wavelet transform invention causes a g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 1995